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bstract

Both for a borosilicate glass and a lithium–aluminium–silicate glass ceramic, it is found that quantitative predictions of the dimensional stability
nder thermal load are possible applying the semi-empirical Tool–Narayanaswamy–Moynihan model for structural relaxation, with the kinetic

arameters obtained via DSC.

This adds two systems to the list of materials for which the correspondence of the relaxation kinetics of volume and enthalpy have been
nvestigated.

2007 Elsevier B.V. All rights reserved.
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. Introduction: calorimetric and dilatometric
ngerprints of the glass transition in glasses and glass
eramics

In a crystal which is an ordered system with translational
ymmetry, the ensemble made up by any atom and its neigh-
ours may be mapped onto the corresponding atoms of the unit
ell. This means that there is essentially one configurational state
in simple crystals) or there are at least only few configurational
tates (such as in molecular crystals) in which an atom of one
ind may be found. In a glass which is a disordered system
ithout translational symmetry there are many different such

onfigurational states [1]. (This must be the case because other-
ise the material would be ordered.) As there is no reason for

ny atomic ensemble to be in one particular of these configura-
ional states, the multitude of these configurational states gives
ise to a corresponding number of degrees of freedom (Fig. 1).

These configurational degrees of freedom, in return, give rise

o a characteristic feature of the glassy state, the calorimetric
lass transition. As the energy levels of the different config-
rational states are not the same (any energetic degeneration
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tability

f states would be very unlikely), the glass will change the
verage configurational energy level according to the environ-
ental temperature. Consider the case of constant environmental

emperature and pressure as well as the corresponding thermo-
ynamic potential, i.e. Gibbs’ free energy G:

= E + PV − ST (1)

is the pressure, V the volume, S the entropy, and T is the temper-
ture. To minimize Gibbs’ free energy at higher temperatures,
ow energy and high energy configurations will be equally pop-
lated in order to increase the entropy. At lower temperatures,
here the ST-term does not count so much, the low energy con-
gurations will be preferred. For every temperature, there is an
quilibrium distribution of atomic ensembles among the possible
onfigurations.

If the glass is cooled down from high to low temperatures, this
istribution will change accordingly thus lowering the average
onfigurational energy. The redistribution of atomic ensembles
mong configurational states in order to reach equilibrium is
alled structural relaxation. (Note that minimization of Gibbs’

ree energy refers to the metastable supercooled liquid state
hich corresponds to a local minimum of G.)
The configurational changes involved, however, are kinetic

rocesses with a time scale strongly depending on temperature.

mailto:ulrich.fotheringham@schott.com
dx.doi.org/10.1016/j.tca.2007.06.007
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the dimensional stability during such a process. In the follow-
ing, it will be shown for a glass and a glass ceramic that this
is possible in a quick and easy way with a quantitative char-
acterisation of the relaxation kinetics derived from differential
ig. 1. Multitude of configurations for an atom and its environment in a glass
s compared to a crystal.

his has two reasons. First, the transition of an atomic ensemble
rom one particular configurational state into another is hin-
ered by a potential barrier and requires thermal activation.
econd, the number of configurational states taking part in struc-

ural relaxation decreases with temperature (in other words: the
onfigurational entropy is temperature dependent) which also
akes the probability of a reconfiguration of an atomic ensem-

le decrease with decreasing temperature. Together, these two
ffects give rise to a temperature dependence of the structural
elaxation time scale which is much stronger than the one of con-
entional thermal activation, as described by the Adam–Gibbs
heory [1]. (Over a limited temperature range, one may describe
his temperature dependence by an apparent thermal activation
nthalpy; this apparent thermal activation enthalpy, however,
s not temperature independent. It is the higher the lower the
emperature range considered is.)

As a consequence, in a temperature range depending on the
ooling rate, the time scale of the configurational changes will
xceed the time scale of the cooling process (which is pro-
ortional to the inverse cooling rate; this is where the above
ependence on the cooling rate comes from). This is the glass
ransition range in which the distribution of atomic ensembles
mong possible configurations freezes in [2].

If a glass is cooled down very slowly, this freezing-in
ill occur in a comparatively low temperature range or, char-

cterising this temperature range by a single temperature, a
omparatively low freezing-in temperature. The frozen-in dis-
ribution of atomic ensembles among configurational states will
orrespond to this temperature. If the same sample is heated up
gain rapidly thereafter, the thawing will occur at a compara-
ively high temperature. A significant redistribution of atomic
nsembles among configurational states will follow because of
he misfit of the frozen-in distribution to the temperature of
hawing. The bigger the difference between the freezing-in tem-
erature and the thawing temperature is, the bigger this misfit
s.

Since the redistribution of atomic ensembles requires energy,
ne will find a strong peak in the differential scanning calorime-

er curve [3]. This peak marks the calorimetric glass transition.
t temperatures below the peak, the configurational degrees of

reedom are frozen in and do not influence the specific heat
hich is then only determined by the vibrational degrees of

F
S
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reedom at these temperatures. At temperatures above the peak,
he configurational degrees of freedom just come on top of the
ibrational ones. This gives rise to the step of the specific heat
hich is one characteristic feature of the glass transition. The
ther characteristic feature is the above peak. The exact size
f this peak depends on the misfit of the involved distributions
f atomic ensembles which in return depends on the difference
etween cooling and reheating rate (Fig. 2).

The configurational changes above have some volumetric or
ilatometric impact, too. If, for instance, a glass sample is equi-
ibrated at a certain temperature (which means that the sample is
eld at this temperature long enough to allow the corresponding
edistribution of atomic ensembles among the possible con-
gurations) and then brought to another temperature, one will
bserve two effects involving dimensional changes. The first is
he contribution of the regular thermal expansion. It is an instan-
aneous effect which is due to the change of medium atomic
istances. The second is the contribution of the configurational
hanges and has their kinetics therefore. At high tempera-
ures (i.e. at temperatures significantly above those where the
alorimetric glass transition occurs for typical experimental
onditions), it happens almost instantaneously and causes an
dditional contribution to the thermal expansion. At low tem-
eratures, it is frozen in. In the temperature range of the glass
ransition, it is observed as delayed thermal expansion. Time-
cale and temperature of observation are linked (same as for
he calorimetric glass transition the temperature range of which
epends on the heating rate also).

This delayed thermal expansion is a crucial property of any
lass that is exposed to a heat treatment at temperatures close to
he glass transition range [4]. Such heat treatments occur, e.g. if
glass is coated with semiconductor layers as it happens during

he fabrication of flat panel displays.
It is desirable to be able to make quantitative predictions of
ig. 2. Calorimetric glass transition of a borosilicate glass (BK7TM from
CHOTT AG) measured at 12 K/min.
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canning calorimeter measurements, if the latter are carried out
n the appropriate way.

This is meant as a contribution to the discussion about the
niversality of the relaxation kinetics, in particular concerning
nthalpy and specific volume (or density). There is literature both
n favour of and against this idea. For glassy B2O3, differences
etween the relaxation kinetics of the enthalpy and the refractive
ndex have been found [5]; as the refractive index depends on
he density only as long as the modes of the atomic oscillators do
ot change (which can be monitored via the transmission curve),
his indicates that enthalpy and density relaxation are not exactly
he same for glassy B2O3. Some differences in kinetics have also
een found for a polyetherimide [6].

There is also literature in support of the idea that enthalpy
nd specific volume should have the same relaxation kinetics, at
east in a limited temperature range around the annealing point.
ee [7] for NIST SRM 710 standard soda-lime glass, [8] for
s2Se3, As2S3, PS, PVA, PC, PMMA, PVC, and others. See

9,10] again for PS. Below, the borosilicate glass BK7TM and a
ithium–aluminium–silicate (LAS) glass ceramic will be added
o that list.

Note that these findings are in accordance with the theoret-
cal considerations in [11–13] indicating that the smaller the
rigogine–Defay ratio is for a given glass, the smaller the upper

imit for a difference of the volume relaxation kinetics and the
nthalpy relaxation kinetics is. (“Small upper limit” means: there
ay be a difference or there may be none; if there is one, it is

mall.) PVA and the oxide glass SF64TM, for example, have a low
rigogine–Defay ratio (i.e. 2.2 and 1.9, respectively) whereas
lassy B2O3 has a higher one (i.e. 4.7) [14].

To our knowledge, the derivation of the parameters of the
ool–Narayanaswamy–Moynihan model from DSC measure-
ents and the comparison of the thus characterized enthalpy

elaxation kinetics with the volume relaxation kinetics, has been
arried out for the first time for an inorganic (lithium aluminium
ilicate) glass ceramic. See [15] for an earlier oral presentation
f part of the glass ceramic data. See [16] for similar results
oncerning BK7TM.

. The Tool–Narayanaswamy–Moynihan model for the
lass transition

To characterize the configurational state of a glass both in the
quilibrium and the non-equilibrium state, Tool has introduced
he so-called fictive temperature which he has defined as the
emperature at which a glass of the given configurational state
ould be at equilibrium, even if the environmental temperature

s different.
During a cooling and reheating cycle, the fictive temperature

hanges will take the following course. At high temperatures
he fictive temperature will be equal to the environmental tem-
erature. In the glass transition range, it will deviate from the
nvironmental temperature and take a constant value when the

onfigurational degrees of freedom are frozen in. This constant
alue will stay until the glass transition is reached again dur-
ng reheating. There, it will then start to rise first gradually and
hen faster. At high temperatures, it will immediately follow

r

ζ
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he environmental temperature as it did at the beginning of the
ycle.

All macroscopic properties which are dependent on the
istribution of the atomic ensembles among the possible config-
rational states, such as enthalpy per mass or thermal expansion,
ave to be considered as functions of the fictive temperature
herefore. A linear relationship which comes on top of the tem-
erature dependence (vibrational part) is assumed:

property = χproperty,vibrational�T

+ χproperty,configurational�Tf (2)

Together, χproperty, vibrational and χproperty, configurational are the
eneralized susceptibilities such as the specific heat or the
hermal expansion coefficient which one finds in the equi-
ibrium state above the glass transition where Tf = T holds.
elow the glass transition, one will find χproperty, vibrational
nly. In the glass transition range, one will find a time-
ependent response depending on the kinetics of the fictive
emperature.

To describe this kinetics, Tool introduced the following dif-
erential equation for the fictive temperature [17]:

dTf

dt
= T − Tf

τ
(3)

is the time, and τ is the structural relaxation time constant
hich depends on the temperature. For the latter, the first
uess is an Arrhenius-type law, with τ0 being a temperature-
ndependent prefactor and H being the (apparent!) activation
nthalpy:

= τ0 eH/k·T (4)

If a sample with fictive temperature Tf(0) is exposed to an
nvironment with temperature T and the latter is held constant,
hen the solution of (3) is a single-exponential function:

f = T + (Tf(0) − T ) e−t/τ (5)

Although being suited to describe the essential features of the
ctive temperatures, the simple approach represented by (3) and
4) has had to be revised with respect to a number of findings.
ne observation has been made considering large temperature

umps where the thermal activation has been found to depend
n the fictive temperature.

A suited formula taking this into account is an Arrhenius-type
hermal activation function depending on both the temperature
nd the fictive temperature [18,3]:

= τ0 eH/k·((x/T )+((1−x)/Tf)), 0 < x < 1 (6)

is called nonlinearity parameter for the following reason. If
6) is inserted in (3), the latter will cease to depend linearly on
he variable Tf. To make (3) a linear differential equation again,
he variable t is replaced by the new variable ζ which is called

educed time [19,20]:

≡
∫ t

0

dt′

eH/k·((x/T (t′))+((1−x)/Tf(t′)))
(7)
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Note that (7) differs from the common definition of the
educed time yielding a dimensionless quantity which is equiv-
lent to ζ/τ0.

Another finding has been on temperature jump experiments
arried out at constant temperature T after equilibration at a
onstant temperature T0. The kinetics has turned out to be dif-
erent from a single exponential. For short times, the relaxation is
aster than according to a single exponential; for long times, it is
lower. Usually a stretched-exponential or Kohlrausch-function
ts better:

Tf = T + (Tf(0) − T ) e−(ζ/τ0)b ,

0 < b < 1, Tf(0) = T0 (8)

is the so-called Kohlrausch- (who first applied a stretched
xponential function on a relaxation process in 1847) or
ohlrausch–Williams–Watts- (the latter two revitalized the

tretched exponential function in 1970) parameter [21–23].
Taking these findings into account, one arrives at what is

alled Tool–Narayanaswamy–Moynihan model today. Below,
t will be applied in the following way which covers non-
sothermal processes also and is suited for computational
urposes:

. The Kohlrausch-function is represented by a Prony series
of single exponentials with coefficients νi and individual
relaxation times τ0,i allowing for the “fast” and the “slow”
part of the Kohlrausch-function. The νi and τ0,i are chosen
such that an optimum representation of the Kohlrausch-
function results. The precision of this representation, of
course, depends on the order number n of the Prony series:

e−(ζ/τ0)b =:
n∑

i=1

vi e−(ζ/τ0,i),

n∑
i=1

vi = 1 (9)

. Tf is represented by a series of Tf,i. with the coefficients being
identical to those of the above Prony series:

Tf(ζ) =:
n∑

i=1

vi · Tf,i(ζ) (10)

. Tool’s original differential equation is replaced with a series
of differential equations, one for each of the Tf,i from above:

dTf,i

dζ
= T − Tf,i

τ0,i

(11)

With the above, the resulting version of the Tool–Narayana-
wamy–Moynihan model consists of n differential equations
epending on four independent parameters: H, x, τ0, b. It is
onsistent with the above findings.

It has to be mentioned that beside the Tool–Narayana-
wamy Moynihan (TNM) model there is the Kovacs–Aklonis–

utchinson–Ramos (KAHR) model, see [24]. Both models have

ound to be equivalent [25]. In [24], the issue of equal or non-
qual relaxation kinetics for enthalpy and volume is explicitly
entioned. It is stated that the formalism applies to both. As

t

mica Acta 461 (2007) 72–81 75

or the model parameters, both possibilities of equality and non-
quality are considered possible.

Note that the TNM model as applied here, i.e. with one con-
tant apparent thermal activation enthalpy, is valid only over a
imited temperature range around the annealing point. For strong
lass formers like oxide glasses (or “long” glasses in the nomen-
lature of the glass makers), this temperature range is broad
nough to make it a very powerful tool for most practical cases
hich is confirmed by the following analysis. It has to be stated

hat the statement about the correspondence of the time scales
or enthalpy and volume found here is limited to this temperature
ange also. See again [9,10] where volume and enthalpy relax-
tion are investigated for polystyrene. In the temperature range
here the TNM model is applicable, the kinetics found is the

ame for both processes. Deviations occur when this temperature
ange is left.

See [26,27] for the evaluation of DSC curves with the TNM
odel in general. See [28,29] for the application of modulated
SC in this context.

. Measurement of kinetic processes by differential
canning calorimetry (DSC)

With what has been said above, it is clear that differential
canning calorimetry is well suited to derive the fictive tempera-
ure kinetics of any glass, in particular the four parameters of the
NM model. Care must be taken, however, concerning the nec-
ssary desmearing or deconvolution of the experimental data.
o carry out this, a thorough understanding of the instrument is
equired.

The principle setup of a heat-flux DSC is this. The sample
eing investigated is put into a crucible which in return is put into
crucible holder in an oven. In addition to this crucible holder,

here is a second crucible holder in the oven with a crucible that
s left empty during the measurement and is used as reference. To
arry out the measurement, the oven temperature TO is raised at a
onstant rate while the sample temperature TS and, in particular,
he difference �T between the sample temperature TS and the
eference temperature TR are being monitored (Fig. 3).

From these data, the heat capacity of a sample can be
btained. Assuming that the heat transfer between oven and sam-
le is proportional to the temperature difference �T, divided by
thermal resistance R, and further assuming that the heating

ates of the sample, the reference, and the oven are the same,
ne will arrive at the Tian–Calvet equation in its simplest form.
t relates the sample heat capacity CS to the temperature differ-
nce �T, the oven heating rate dTO/dt, and the above thermal
esistance R [30]:

−�T

R · ·
TO

= CS (12)
The derivation starts at applying some kind of “node rule” at
he interface of the crucible mounts and the crucible:

TO − TS

R
= (CC + CS) · ·

TO,
TO − TR

R
= CC · ·

TO (13)
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Fig. 3. Principle setup of a heat-flux DSC.

C is the heat capacity of the empty crucible. The node rule
t the position of the sample crucible holder says that the heat
ux coming from the oven, i.e. (TO − TS)/R according to the
ssumption, equals the power required for heating up the sample
ith its crucible at the oven heating rate, i.e. (CC + CS) dTO/dt. In
steady state, this node rule obviously applies. For the node rule
t the position of the reference crucible, an analogous argument
olds.

Combining the two equations of (13), one arrives at (12).
R is obtained from a run on a substance the specific heat of

hich is known, for instance sapphire (and will turn out to be
weak function of temperature). �T is measured, and dTO/dt

s controlled. With this, one may determine the specific heat of
ny substance via a DSC run, as it has been said above.

However, the above simple version of the Tian–Calvet for-
alism may not be applied if exothermal or endothermal

rocesses in the sample occur. In that case, the heating rate of
he sample may significantly differ from the one of the oven.

ith the usual setup, this will not even be correctly recorded
y the sensor monitoring the sample temperature since the latter
s situated on the outer surface of the sample crucible. This has
o be allowed for by a DSC model which shall be suited for a
orrect analysis of the calorimetric glass transition.

There is one type of DSC models starting at a representation
f the DSC by an analogon to an electric circuit, with thermal
esistances and heat cacities or “RC-elements”. Depending on
he number of RC-elements, the models of this type are classified
s zeroth-order, first-order, etc. [31].

With such a model and a couple of calibration measurements,
he desired structural relaxation data reduction can be carried out

n a satisfactory way, as will be shown below (Fig. 4).

According to the extended model considered here, the DSC
s represented by three heat capacities and three thermal resis-
ances which are assumed to be separable, i.e. the heat capacities
ig. 4. Representation of a heat-flux DSC by thermal resistances and heat capac-
ties.

ave no inherent thermal resistance and vice versa. The empty
rucible heat capacity CC, the sample heat capacity CS and the
hermal resistance R between oven and crucible are the same
s above. In order to make the model consistent with the dis-
inction between a sample crucible temperature T ′

S (which is
ssumed to be the one measured by the sensor on the outer sur-
ace of the sample crucible) and an actual sample temperature
S, an additional thermal resistance R′ between the sample and

he sample crucible is introduced. The reference crucible tem-
erature which is not measured directly is named T ′

R here for
onsistency reasons.

Note that in the presence of exothermic or endothermic pro-
esses, CS should be called “apparent heat capacity” because it
omprehends both the heat exchange due to these processes as
ell as the one due to the real heat capacity.
With this model, the relation between the apparent sample

eat capacity CS and the quantity �T measured by the DSC
ecomes

R · CS · ·
TO + R · CS · ·

�T + R′ · CS · ·
�T + R · CC · ·

�T

+ R · CC · R′ · CS · ··
�T = −�T (14)

One may call (6) “extended Tian–Calvet equation”. It is to
e classified as second-order with respect to the appearance of
he second derivative of �T.

The derivation is analogous to the one of the simple version
f the Tian–Calvet equation and starts at the following set of
quations:

TO−T ′
S

R
=CC ·

·
T ′

S+T ′
S−TS

R′ (node rule at sample crucible),

CS · ·
TS = T ′

S − TS

R′ (node rule at sample),

TO − T ′ ·
R
= CC · TR (node rule at reference crucible)

�T = T ′
S − T ′

R (quantity measured by DSC),

T ′
S (temperature monitored by DSC) (15)
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ig. 5. Determination of the DSC model parameters by evaluation of an alu-
inium melting peak.

From this set of equation, one may also derive the relation
etween the actual sample temperature TS and the measured
uantity T ′

S:

S = T ′
S + �T · R′

R
+ ·

�T · R′ · CC (16)

As it has been said above, R is derived from a calibration
easurement on a standard. The additional two parameters that

ave entered the extended Tian–Calvet equation compared to
he simple one can be derived from additional measurements on
luminium (Fig. 5).

Both the ascending and the descending part of the melting
eak lead to one equation. At any point of the linearly ascending
art, the following equation is valid:

TO

R
= CC ·

( ·
�T + ·

TO

)
+

(
�T + TO − R · CC ·

·
T ′

O

)
·

×
(

1

R′ + 1

R

)
− Tm

R′ (17)

This equation is derived from the following set of equations
hich is a subset of (15) and is valid as long as the melting of

he aluminium goes on

TO−T ′
S

R
=CC ·

·
T ′

S+T ′
S−Tm

R′ (node rule at sample crucible),

TO − T ′
R

R
= CC ·

·
T ′

O (node rule at reference crucible),

�T=T ′
S−T ′

R (quantity measured by DSC) (18

The descending part of the melting peak is described by the
xtended Tian–Calvet equation which may be simplified in the

ollowing way in order to allow an easy evaluation:

�T = R · CS · ·
TO + R · CS · ·

�T + R′ · CS · ·
�T

+ R · CC · ·
�T + R · CC · R′ · CS · ··

�T ≈ R · CS · ·
TO

t

mica Acta 461 (2007) 72–81 77

+ R · CS · ·
�T + R′ · CS · ·

�T

+R · CC · ·
�T neglecting

··
�T ⇒ �T (t)

= −R · CS · ·
TO

+
(

�T (0)+R · CS · ·
TO

)
e−t/(R·(CS+CC)+R′·CS) (19)

From the simultaneous fit of the Eqs. (17) and (19) to the
scending and the descending part of the aluminium melting
eak, CC and R′ are determined (here, CS is the specific heat
f the aluminium sample). With all parameters R, R′, and CC
nown, an unknown (apparent) CS can then be determined
rom (6). For the MHTC96 from Setaram, typical values are
= 2.4 K/W, R′ = 3.6 K/W, and CC = 11 J/K.
The aluminium melting peak is also used for the calibra-

ion of the temperature scale. In the limit dTO/dt → 0, the onset
emperature must be equal to the melting point of aluminium
32].

From the temperature and heating rate dependence of CS, in
eturn, the kinetics of an endothermic or exothermic process can
e derived.

. Application on the glass transition and the
imensional stability issue of glasses

With what has been said in the previous paragraph, the quan-
ity displayed by the DSC measurement of the calorimetric glass
ransition may be identified as apparent heat capacity or, if
eferred to the unit mass, apparent specific heat. From these mea-
urements, the derivation of the parameters of the TNM model
s possible.

The first step is to evaluate the measurements according to
14). If one compares to an evaluation according to (12), one
nds that with the latter one gets a smearing-out of the peak
ver a broader temperature range, particularly for higher heating
ates. So the evaluation according to (14) is equivalent to an
esmearing of the otherwise smeared-out curve (Fig. 6).

In the temperature range of a glass transition and above,
he enthalpy per time accepted by the sample during heating
s partially converted into vibrational enthalpy and partially into
onfigurational enthalpy. The vibrational part of the specific heat
nd the configurational part of the specific heat are assumed to
e constant [4], see above. This means

cp,apparent · dTS

dt
= cp,vibrational · dTS

dt
+ cp,configurational ·

dTf

dt
⇒ dTf

dTS
= cp,apparent − cp,vibrational

cp,configurational
(20)

Comparing Eq. (20) with the TNM-model from above one
nds that the parameters of the latter should be chosen such that
he following equation holds approximately:

cp,apparent − cp,vibrational

cp,configurational

!≈ 1

dTS/dt

n∑
i=1

vi · Tf,i

dt
(21)
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Fig. 6. (a and b) Desmearing of DSC measurements. Without, the centre of the
4 K/min peak would be positioned at a temperature which is too high by 4 K.
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expansion.

αvibrational is usually known from regular thermal expansion
measurements. If αconfigurational is also known, e.g. from an ear-
lier temperature jump experiment with the sample having been
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of the article.)

This task can be carried out by any fitting routine which is
apable of handling differential equations. In each loop, the dif-
erential equations (11) are integrated for a given set of TNM
odel parameters which fitted during the progress of the routine.
he initial conditions for the differential equations are obtained

he following way. From an integration of (20) starting at a tem-
erature well above the glass transition where Tf = T is valid and
ver an interval covering the glass transition range, the initial
alue for the fictive temperature is obtained. At the beginning of
ach loop of the fitting routine, a linear cooling rate is determined
hich leads to this initial value of the fictive temperature, now

alculated via the TNM model with the given set of TNM model
arameters. This calculation gives initial values for the individ-
al Tf,i under the assumption that the glass had been exposed to
inear cooling before the DSC measurement (which is usually
ustified).
If one adjusts the parameters subsequently and “by hand”, the
ffect of each parameter on the fit curve will become particularly
lear [16]. The resulting fit shows that the Tool–Narayanaswamy

F
i
t

mica Acta 461 (2007) 72–81

oynihan model allows an almost perfect representation of
he measured data. The TNM-model parameters obtained
rom the DSC for BK7TM are: τ0 = 8.75 × 10−36 s, b = 0.694,
/k = 71802.3 K, x = 0.695 (Fig. 7).
Without desmearing, one would get too small a value for the

pparent activation enthalpy, approximately by 20%.
These parameters can be used for a prediction of the dimen-

ional stability of a glass sample that is equilibrated at a
emperature T1 first and then exposed to a temperature jump to a
emperature T2. The starting point is the dilatometric equivalent
f (20)

dl

dt
= αvibrational · dT

dt
+ αconfigurational · dTf

dt
(22)

is the sample length. α stands for the coefficient of thermal
ig. 7. (a and b) Fit of TNM model to DSC measurements on BK7TM. (For
nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)
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Fig. 8. Compaction prognosis for a temperature jump experiment on BK7TM

with the TNM model (H, x, b, τ : from DSC, α = 35 ppm/K from
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a
broad (which corresponds to a small value of the Kohlrausch
parameter b). A thorough explanation of these phenomena would
require the understanding of structural relaxation under geo-
0 configurational

ensity measurement of the melt).

quilibrated both before and after the temperature jump or from
comparison of α in the molten state and αvibrational, then the

inetics of the delayed sample shrinkage following the instanta-
eous vibrational effect can be very satisfactorily predicted for
ny further temperature jump experiment based on the calcula-
ion of Tf(t) by the TNM model with the parameters obtained
rom a DSC according to the above procedure. Note that without
esmearing, the extrapolation of the structural relaxation kinet-
cs from ca. 570 ◦C, where it is measured, to 510 ◦C, where the
emperature jump experiment takes place, would give a relax-
tion time at 510 ◦C which would be wrong by a factor of about
(Fig. 8).
One application is the prediction (and tailoring) of the shrink-

ge of display glasses during the coating processes in flat panel

isplay production.

ig. 9. Apparent specific heat of a lithium–aluminium–silicate (LAS) glass
eramic showing a calorimetric glass transition at ca. 800 ◦C.
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. Application on the glass transition and the
imensional stability issue of glass ceramics

A calorimetric glass transition can also be found in a glass
eramic (Fig. 9).

This is no surprise since a glass ceramic consists of crys-
als embedded in a residual glass matrix which should display

glass transition. The small value of the corresponding con-
gurational part of the specific heat of the overall system, i.e.
.08 J/(g K) compared to 0.3 J/(g K) observed at the borosilicate
lass, results from the small share (ca. 30%) which the residual
lass phase has in the glass ceramic (for LAS glass ceramics see
33]).

There are two peculiarities of the calorimetric glass tran-
ition of a glass ceramic. First, the glass transition occurs at
comparatively high temperature. Second, it is comparatively
ig. 10. (a and b) Fit of the TNM model to two DSC measurements of the
alorimetric glass transition of a LAS–glass ceramic. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f the article.)
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Fig. 11. Temperature up-jump experiment on a LAS–glass ceramic. (For inter-
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retation of the references to color in this figure legend, the reader is referred to
he web version of the article.)

etrical constraints, an item that is even more challenging
han the understanding of structural relaxation in the bulk (and
ven the latter does not yet exist in a completely satisfactory
ay).
However, there are findings that may contribute to an expla-

ation of these observations.
Simulations of a glass film with a dimension which is com-

arable to the one of the residual glass phase in a typical glass
eramic have shown that in such film, there are two relaxation
rocesses, a fast one with a kinetics similar to the one of the bulk
nd a slow one which becomes more and more dominant with
ecreasing film dimension [34]. The slow one is characterized
y a small Kohlrausch parameter.

Although the simulated glass has been a theoretical one (a
ennard–Jones glass, with the film being in between walls of

rozen glass), one may take this result as one hint that cer-
ain geometrical constraints lead to slower relaxation times and,
onsequently, an increase of the glass transition temperature
bserved.

Remarkably, the evaluation of the calorimetric glass transi-
ion of a glass ceramic with respect to the parameters of the
NM-model allows a prediction of dimensional changes in the
ame way as for regular glasses (Fig. 10).

The TNM-model parameters obtained from the DSC
or the LAS glass ceramic are: τ0 = 9.8 × 10−18 s, b = 0.38,
/k = 49,076 K, x = 1.
αconfigurational is obtained from a temperature up-jump

xperiment which is simulated by the Tool–Narayana-
wamy–Moynihan model with the kinetic parameters as
btained via DSC and αconfigurational as only fit parameter.
configurational = 5.25 ppm/K is found (Fig. 11).

Together, all these parameters can be used to predict the out-
ome of a temperature down-jump experiment. The fact that

n up-jump experiment leads to expansion whereas a down-
ump experiment leads to shrinkage is another clear hint for the
xistence of a glass transition since for the latter, depending on

[

ig. 12. Dimensional stability prognosis for a LAS–glass ceramic. (For inter-
retation of the references to color in this figure legend, the reader is referred to
he web version of the article.)

hermal history, both shrinkage and dilatation are possible after
temperature jump (Fig. 12).

For a temperature up-jump experiment on a glass ceramic see
lso [35].

. Conclusion

Quantitative dimensional stability predictions can be made
ith the Tool–Narayanaswamy–Moynihan model and DSC-
erived model parameters both for the borosilicate glass BK7TM

nd an LAS glass ceramic in the respective glass transition
anges. The appropriate deconvolution of the DSC curves is a
recondition.
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